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Manufacturing systems typically contain processing and assembly stages whose output
quality is significantly affected by the output quality of preceding stages in the system.
This study offers and empirically validates a procedure for (1) measuring the effect of each
stage’s performance on the output quality of subsequent stages including the quality of
the final product, and (2) identifying stages in a manufacturing system where management
should concentrate investments in process quality improvement. Our proposed procedure
builds on the precedence ordering of the stages in the system and uses the information
provided by correlations between the product quality measurements across stages.

The starting point of our procedure is a computer executable network representation of the
statistical relationships between the product quality measurements; execution automatically
converts the network to a simultaneous-equations model and estimates the model parameters
by the method of least squares. The parameter estimates are used to measure and rank the
impact of each stage’s performance on variability in intermediate stage and final product
quality. We extend our work by presenting an economic model, which uses these results, to
guide management in deciding on the amount of investment in process quality improvement
for each stage.

We report some of the findings from an extensive empirical validation of our procedure
using circuit board production line data from a major electronics manufacturer. The empir-
ical evidence presented here highlights the importance of accounting for quality linkages
across stages in (a) identifying the sources of variation in product quality and (b) allocating
investments in process quality improvement.

(Quality and Process Improvement; Total Quality Management; Investments in Learning; Multistage
Manufacturing Systems)

variability leads to improved products and reduced
quality costs. Reducing variability is also known to

1. Introduction
The use of statistical quality control and related

quality-improvement methods has become wide-
spread in recent years as a result of the increased
emphasis on improving quality and product com-
petitiveness. An important premise underlying these
methods is that reducing process and product
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favorably affect operating metrics such as productiv-
ity, cycle time, and capacity. Tagaras and Lee (1996)
and Williams and Peters (1989) recognize that the
output quality of some stages in multistage man-
ufacturing systems is significantly affected by the
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output quality of preceding stages. Most of the liter-
ature on quality control and improvement, however,
is restricted to single-stage models or assumes the
absence of quality linkages across stages. A notable
exception is Hawkins (1993), who proposes a proce-
dure for monitoring process quality in manufacturing
systems where the measures of output quality are cor-
related across stages.

This study proposes and validates a procedure for
measuring the effect of each stage’s performance on
the output quality of subsequent stages, including the
quality of the final product. The proposed procedure
builds on the precedence ordering of the stages in
the system and uses the information provided by cor-
relations between the product quality measurements
across stages. The starting point of the procedure is
a computer executable network representation of the
statistical relationships between the product quality
measurements; execution automatically converts the
network to a simultaneous-equations model and esti-
mates the model parameters by the method of least
squares.! The parameter estimates are used to mea-
sure and rank the impact of each stage’s performance
on variability in intermediate stage and final product
quality.

The model and procedure developed in this paper
are applied to circuit board production line data
from a major electronics manufacturer. The data set
used in this empirical validation includes measure-
ments on several machine performance and prod-
uct quality variables from both the intermediate
and final stages. We illustrate how the procedure
can guide management in deciding how quality-
improvement resources should be allocated among
the stages of the manufacturing system. Our empiri-
cal findings demonstrate that quality linkages across
stages need to be accounted for in identifying the
sources of variability in product quality. Moreover,
our results imply that ignoring quality linkages
can lead manufacturers to make suboptimal invest-
ments in quality improvement. Thus, our study calls
attention to the need for manufacturers to incorpo-
rate information on quality linkages into decisions

! The network execution software is written by Wynne Chin and
Timothy Frye at the University of Calgary, Alberta, Canada.
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about quality-improvement investments. In terms
of implications for statistical process control, we
present empirical evidence that conventional process-
monitoring procedures (statistical process control
charts) are not appropriate for identifying stages
that are out of control. This emphasizes the need
for manufacturers to use process-monitoring proce-
dures that are designed for multistage manufacturing
systems.

Decisions about investments in process quality
improvement have the potential to favorably impact
quality-related costs (e.g., the costs associated with
producing nonconforming products) and are crucial
to the efficacy and success of quality-improvement
initiatives. By augmenting our multistage model with
research on continuous quality improvement and
learning, we extend our work to formally incorporate
quality costs into decision making about investments
in quality improvement. To our knowledge, previ-
ous studies on investments in quality improvement
and learning are restricted to single-stage models. We
develop an economic model that links investments in
quality improvement to reduced variation in prod-
uct quality and, in turn, savings in quality costs. The
economic model specifies that investments in quality
improvement face diminishing marginal returns with
respect to savings in quality costs. The model is used
to derive the optimal amount of investment in qual-
ity improvement for each stage of the manufacturing
system.

Our study makes three important contributions to
the literature. First, it offers and empirically validates
a model and procedure for measuring the impact
of each stage’s performance on variation in interme-
diate and final product quality. Knowledge of each
stage’s impact on product variability is useful in eval-
uating stage performance and in allocating quality-
improvement resources. The second contribution of
our research is that we present an economic approach
for deciding on the amount of investment in pro-
cess quality improvement for each stage of the manu-
facturing system. Finally, we demonstrate the impor-
tance of identifying and measuring quality linkages
across stages in quality-improvement initiatives such
as statistical process control and Total Quality Man-
agement (TQM) programs.
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1.1. Related Literature

Two distinct streams of research address quality
control and quality improvement for multistage
manufacturing systems. Within the operations man-
agement literature, several papers examine the alloca-
tion of inspection effort in multistage manufacturing
systems. Lindsay and Bishop (1964), Eppen and Hurst
(1974), Ballou and Pazer (1982), Chevalier and Wein
(1997), and others (see Raz 1986 for a review) con-
sider the optimal allocation of inspection stations and
level of inspection at each station. Ballou and Pazer
(1985) examine the optimal combination of inspection
station placement, inspection process improvement,
and manufacturing process improvement. Within the
statistical process control literature, the papers by
Hawkins (1993) and Williams and Peters (1989) study
the design of procedures for monitoring process qual-
ity in manufacturing systems where the measures of
output quality are correlated across stages. In contrast
to our study, however, the above papers are not con-
cerned with measuring each stage’s impact on varia-
tion in product quality or determining the amount of
investment in process quality improvement for each
stage.

The engineering process control literature (see, e.g.,
Montgomery 1996, pp. 386-394 and Janakiram and
Keats 1998 and references cited therein) is also related
to our study in that it has reduction of product vari-
ability as its objective. Applied primarily in continu-
ous processes where the product quality variables are
autocorrelated, engineering process control attempts

Figure 1 Acyclic Manufacturing System

Stage
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to maintain the product quality variable at a target
value through regular adjustment of a process input.
Thus, engineering process control attempts to reduce
predictable quality variation whereas the focus of our
study is on identifying (a) the sources of variation in
product quality and (b) the optimal amount of invest-
ment in process quality improvement for each stage
of the manufacturing system.

1.2. Organization of the Paper

The remainder of the paper is organized as follows.
Section 2 gives our variable definitions and presents
a simultaneous-equations model of the statistical rela-
tionships between the stages of a general acyclic man-
ufacturing system. Section 3 describes our procedure
and focuses on model parameter estimation. In §4,
we discuss an application of our model and proce-
dure to circuit board production line data. Section 5
develops an economic approach for deciding on the
amount of investment in process quality improve-
ment for each stage. Section 6 closes with a discus-
sion of research issues and implications for quality-
improvement practice.

2. The Model

Consider an acyclic manufacturing system comprised
of M stages. Suppose, as shown in Figure 1, the stages
are numbered in ascending order such that if stage i
precedes stage k, then i < k. The flow of each unit u
through the system can be described as follows. At

O
= 4

O Inspection
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each stage i (=1,2,..., M) one or more operations
(assembly, conversion, fabrication) are performed
on the unit. Measurements from these processes
(e.g., temperature, pressure, etc.) may be observed.
Suppressing the unit identifier, let x; ; denote the
deviation of the jth process variable observed at stage
i from its mean. We assume that process variables
observed at different stages are statistically indepen-
dent, i.e., x; ; is independent of x, ; for i # k; process
variables at the same stage, however, may be corre-
lated, i.e., x; ; may correlate with x; ; only if i =k.
Denote the number of process variables observed at
stage i by p;, and let p= ", p; denote the total num-
ber of process variables observed in the system. Upon
completion of each stage, a product inspection is per-
formed where one or more quality measurements are
taken from the unit. Let y; ; denote the deviation of
the jth product quality variable observed at the inspec-
tion following stage i (=1,..., M) from its mean.
We assume y; ; is a continuous random variable for
all i and j. Denote the number of product quality
variables observed at the inspection following stage
i by g, and let g = Y¥ g, denote the total number
of product quality variables. After the inspection is
performed, the unit proceeds to the subsequent stage.
We initially assume that (a) no rework is performed
and (b) the unit does not leave the system before the
final inspection (the inspection following stage M). In
§4, we describe a straightforward modification that
allows for rework of nonconforming units.

2.1. Specification

A salient characteristic of multistage production sys-
tems is that the quality of a unit at the end of a partic-
ular stage can depend not only on the performance of
that stage but also on the performance of preceding
stages. We model this by allowing the product quality
variables observed immediately following stage i to
be directly affected by the process variables at stage i
and the product quality variables observed at preced-
ing inspections. Formally, we assume the observations
on the product quality variable y; ; (i=1,... , M and
j=1,...,q;) are generated as a linear combination of
the process variables at stage 7 and the product qual-
ity variables observed at preceding inspections.

Figure 2A Two-Stage Serial System

X1 Y11 X2 1 Y21

Stage Inspection

To illustrate our model specification, consider the
two-stage serial system in Figure 2A. For illustration,
we consider the simple case in which one process
variable is observed at each stage and one product
quality variable is observed immediately following
each stage, ie., p, =p, = g, = g, = 1. The statistical
model for this system, in network form, is given in
Figure 2B. This model is written in simultaneous-
equations form as

Vi =0amX;, 1 +&y (1)
Ya,1 = Xy 1+ Bunli,1 +Ex, ()

where the coefficients ay;;, ay;, and By, are param-
eters to be estimated and &;, and &, are random
error terms with zero mean. (A constant term is
absent from (1) and (2) because the variables x; ;
and y; ; have zero mean.) Equation (1) specifies that
the product quality variable y, ; observed following

Figure 2B Statistical Model for the Two-Stage Serial System
Oy
X1
ﬂl 121
0
X21
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Stage 1 may be directly affected by x, ,, the pro-
cess variable at Stage 1. Equation (2) specifies that
the product quality variable y, ; observed following
Stage 2 may be directly affected by the process vari-
able at Stage 2 (x, ;) and the product quality variable
observed immediately following Stage 1 (y; ;).

To present a more general formulation of our
model, we introduce the following notation. Let the
parameter a;; (to be estimated) denote the direct
effect of the Ith process variable observed at stage i
on the jth product quality variable observed at the
inspection following stage i. For each stage i, let D,
denote the set of its predecessors. Let the parame-
ter By;; (to be estimated) denote the direct effect of
the Ith product quality variable observed immediately
following stage k on the jth product quality variable
observed immediately following stage i, k € D;. These
definitions enable us to write the general formulation
of our model as

pi %
Yol Zailjxi,l g ZBku;‘yk,l‘f‘Eq‘/
1=1

keD; I=1

=k LEEM dands sl =1 00 i (S)

where g; is a random error term with mean zero
and variance 05. The simultaneous-equations model
in (3) expresses the product quality variable y; ; as
a linear combination of (a) the process variables
observed at stage i (Y}, @;;x;;), (b) the product
quality variables observed at preceding inspections
(Xken, s BuiiiYx,1), and (c) a random error term (&;;).
The error term &; represents the net effect of unob-
served process variables at stage 7 on y; ;. We assume
that ¢ is distributed independently of x}/l for all 7, j,
k, and I. We further assume that ¢; is independent of
gy for i #k, ie, the g; are uncorrelated across stages.
To facilitate subsequent discussion, we now set out
as compactly as possible the simultaneous-equations
model in (3) using vector-matrix notation. Let the
vector (V; 1, Yi 2, -+ + Yi,q) =Y, be the 1 xg; vector of
product quality variables observed at the inspection
following stage i (=1, ... , M). Similarly, let the vector
(Xi,1,Xi 2, -+ , X)) =X; be the 1 x p; vector of process
variables observed at stage i. These definitions enable

MANAGEMENT SCIENCE/ Vol. 48, No. 5, May 2002

Figure 3A  Assembly System
|
M
N
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Stage Q Inspection

us to write the system of equations in (3) compactly
in vector-matrix form as

Vi=XA;+ 3 viBi+e (i=1,...aM), (4)

keD;

where A; is a p; x q; matrix of coefficients with /jth
entry a;;, By; is a g, x g, matrix of coefficients with
lith element B,;;, and €; is a 1 x ¢; vector of random
errors with ¢; in the jth position. Denote the g; x g;
variance-covariance matrix of €; by %, i=1,... , M.

Figure 3A is an example of an M =5 stage assem-
bly system. Stage 3 assembles the outputs of Stages 1
and 2, and Stage 5 assembles the outputs of Stages 3
and 4. (This example assumes, for ease in exposition,
the absence of observable process variables in the sys-
tem.) The model for this system is given in Figure 3B
and is written in simultaneous-equations form as

Y; =Y1Bi3 +y.Bi +&; (5)

Figure 3B Simultaneous-Equations Model for the Assembly System
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5 =Y1B15 +¥2Bos +y3Bss + y4Bys + €. (6)

Equation (5) specifies that the product quality vari-
ables observed at the inspection following Stage 3
may be directly affected by the product quality vari-
ables observed immediately following Stages 1 and 2.
Equation (6) specifies that the product quality vari-
ables observed at the inspection following Stage 5
may be directly affected by the product quality vari-
ables observed immediately following Stages 1, 2, 3,
and 4.

The general model in (4) can be written more com-
pactly as

y=xA+yB+eg, (7)
wihere ivii—a(y, < L)y - X i= 06 LX) de B, =
(&,,...,€y), Ais a p xq matrix of coefficients whose
ikth submatrix equals A; if i =k and equals 0 oth-
erwise, where 0 is a p; x g, matrix of zeros, and
B is a g x g matrix of coefficients whose ikth sub-
matrix equals B, if i € D, and equals 0 otherwise,
where 0 is a g; x g, matrix of zeros. The error vec-
tor € in (7) has zero mean and q x g4 block-diagonal
variance-covariance matrix

MR PR 0
7 et 0

Lt D L0 3 0 (8)
s L R A, o)

The ikth submatrix of X in (8) equals 3, if i =k and
equals 0 otherwise, where 0 is a g; x g, matrix of zeros.

2.2. Sources of Variation in the Product
Quality Variables

An important focus of quality-improvement pro-
grams is identifying and eliminating the sources of
variation in product quality. Reductions in variation
are known to reduce scrap, rework, and warranty
costs, and, moreover, favorably affect operating met-
rics such as productivity, cycle time, inventory levels,
and capacity. This section shows how to quantify the
impact of each stage’s performance on variation in the
product quality variables.
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First, subtract yB from both sides of (7) to get
y(I,—B) =xA+teg, )

where I, denotes the g x g identity matrix. Postmul-
tiplying both sides of the preceding expression by
C=(I,—B)™ gives

y =xAC+eC. (10)

Then, taking the variance on both sides of (10) and
using our assumption that the process variables in x
are uncorrelated with the error terms in €, we obtain

Var(y) = C'A’ Var(x) AC+ C'3C, (11)

where Var(-) denotes the variance-covariance matrix
of (). Equation (11) decomposes the variance of each
product quality variable into components attributable
to each stage.”

To demonstrate how the decomposition in (11) is
used to compute the contribution of each stage’s per-
formance to variation in product quality, consider the
model in Figure 2B. Recall that this model is given
in equation form in (1) and (2). Application of (11) to
this model decomposes the variance of the product
quality variable y, | as

Var(y, ) = a%n Var(x; ;) + ‘7121 ’ (12)

where o7, denotes the variance of &;,. The first term
(variance component) on the right-hand side of (12)
represents the amount of variation in y, ; due to the
process variable x; ;. The second variance component

2The formula in Equation (11) assumes all product quality vari-
ables in the model (7) are endogenous (i.e., determined by vari-
ables within the model). To modify (11) for models that contain
exogenous product quality variables (i.e., product quality variables
whose determinants lie outside the model), let the row vector x*
contain the process variables and the exogenous product quality
variables. Next, let the row vector y* contain the endogenous prod-
uct quality variables. We can now rewrite Equation (7) as y* =
x*A*+y*B* +¢*, where A* and B* are appropriately-defined matri-
ces of coefficients and &* is a row vector of errors with mean zero
and variance-covariance matrix X*. It follows immediately from (7)
and (11) that the variance-covariance matrix of y* can be decom-
posed as Var(y*) = C”A* Var(x*)A*C* + C"2*C*, where C* = (I
B*)~'. This formula is used to compute the impact of each stage’s
performance on variation in the product quality variables.
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on the right-hand side represents the amount of vari-
ation in ¥, ; due to unobserved process variables at
Stage 1. Application of (11) to the model in Figure 2B
decomposes the variance of the product quality vari-
able v, ; as

Var(y, ) = @iy Bl Var(x, ;) + a3, Var(x,,,)

+Binoh + 0'221 , (13)

where ¢ denotes the variance of &,,. The first term
on the right-hand side of (13) represents the amount
of variation in y, ; due to the process variable x, ;.
Similarly, the second term represents the amount of
variation in y, ; due to the process variable x, ;. The
third and fourth terms represent the amount of vari-
ation in y, ; due to unobserved process variables at
Stages 1 and 2, respectively. Hence, in this example
we may view the variance of the product quality vari-
able y, ; as the sum of the variance due to sources at
Stage 1, and the variance due to sources at Stage 2.

3. Procedure

This section describes the procedure for measuring
the effect of each stage’s performance on the output
quality of subsequent stages. Section 3.1 discusses the
estimation of the parameter matrices A, B, and 2.
Section 3.2 deals with estimating the impact of each
stage’s performance on variation in product quality.

3.1. Estimation of Parameters

Here we discuss the estimation of the parameter
matrices A, B, and X% from a data sample of N
observations on the p process variables and g prod-
uct quality variables. It follows from the results
in §3 of Zantek (2000) that the parameters of our
simultaneous-equations model are uniquely identi-
fied. From the fact that the matrix B in (7) is upper
triangular and our assumptions that (a) &; is indepen-
dent of g for i # k and (b) ¢; is independent of x;
for all 7, j, k, and I, it follows that y; , is uncorrelated
with g; for k € D;. Therefore, all the variables on the
right-hand side of (3) are uncorrelated with the error
term (g;) and application of ordinary least squares to

MANAGEMENT ScieNCE/ Vol. 48, No. 5, May 2002

(3) will yield unbiased and consistent estimates of the
coefﬁc’i\ents @y and By;;°

Let A; and B;;, denote the matrices obtained by sub-
stituting in the obvious manner the estimated coef-
ficients into A; and Bj, respectively. Then, for each
stage i (=1,2,...,M), define the N x g; matrix of
residuals E; =Y, —Yi, where Y; is the N x g; data
matrix of observations on the product quality vari-
ables in y; and

Y, =XA;+ ) YiBy, (14)
keD;
where X; is the N x p; data matrix of observations on
the process variables in x;. A consistent estimator of
Y in (8), is

o~

3 0 0 0
e T 0
s= kg™ s 0|, (15)
0:15.054.0 S
where
S, =EE,/N. (16)

3.2. Estimation of Variance Components

To quantify the impact of each stage’s performance
on variation in the product quality variables, first esti-
mate the p x p variance-covariance matrix of the pro-
cess variables, Var(x), by

V0L 0 e AR
0 V, 0 0

V=il b 0818V 01, (17)
0" 10 07 20 eV

where

1
ijﬁx;(IN—ll'/N)X[ (=102 M, IR (AR
where 1 is an N x 1 vector of ones. Let A and B denote

the matrices obtained by substituting the estimated

3In the case where € is a multivariate normal random vector, it
follows from §3 of Zantek (2000) that the ordinary least squares
estimates of a;; and By; are identical to the maximum likelihood
estimates.

597

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyaw\w.manaraa.com



ZANTEK, WRIGHT, AND PLANTE
Process and Product Improvement in Manufacturing

coefficients into A and B, respectively. Then, estimate
the variance components by using (11) and the esti-
mated parameter matrices A, B,3,and V. Since A, B,
3, and V are consistent estimators and the variance
components are continuous functions of the elements
of A, B, X, and Var(x), it follows from the Slutsky
theorem (see, e.g., Greene 2000, pp. 112-113) that this
procedure yields consistent estimates of the variance
components. (For the case where x and & are multi-
variate normal random vectors, it can be shown that
this procedure yields the maximum likelihood esti-
mates of the variance components.)

4. Empirical Application

4.1. Process Description

We begin by describing the circuit board assembly
and inspection process, which is depicted in Figure 4.
For our purposes, we view the process as consisting of

Figure 4 Circuit Board Production Line and Model Specification
Raw Circuit
Board
Y
Solder
Applicator
Y
Automated B Module
Placer 1 | (~ R B, Assembly
Y @
Automated A > ¥y
Placer 2 il 1
s
Automated | \_ 7 Manual
Placer 3 Solder
A
Y
Manual o
Pl Solder
e Applicator
v t
Thermal Manual
Treater “7| Inserter
598

M =2 stages: Board Assembly and Module Assembly.
Board Assembly consists of nine stations, beginning
at Solder Applicator and ending at Manual Solder. At
Solder Applicator, a solder paste is applied to each
circuit board. Next, electronic components are placed
on the circuit board by automated placer machines
at the stations Automated Placer 1, 2, and 3. Compo-
nents requiring manual placement are placed on the
circuit board by an assembly worker at Manual Placer.
Thermal Treater consists of heating and cooling oper-
ations where the solder paste applied at Solder Appli-
cator is melted and subsequently cooled, causing the
components placed at previous stations (Automated
Placer 1, 2, and 3) to be joined to the board. At the fol-
lowing station, Manual Inserter, an assembly worker
inserts through-hole components into predrilled holes
in the board. To solder these components to the board,
the board is next immersed in liquid solder. Electronic
components requiring manual soldering are soldered
to the board at Manual Solder, the final station in
Board Assembly.

At Board Inspection, the board undergoes extensive
testing and numerous product quality measurements
are taken from the board. The board is reworked by
technicians if one or more of these measurements
falls outside specifications. At Module Assembly, each
board is combined with a circuit board assembled
on another line, yielding what is called a module.
Comprehensive tests are performed on the module
at Module Inspection and approximately 200 prod-
uct quality measurements are taken. The module is
reworked by technicians if one or more of these mea-
surements falls outside specifications.

4.2. Data

The data come from several real-time databases main-
tained by the manufacturer. These databases track
each board and record numerous process and prod-
uct quality measurements. The databases contain 11
product quality measurements from Board Inspec-
tion. In addition, of the approximately 200 product
quality measurements taken at Module Inspection,
30 measurements deemed important by management
and engineering are stored in the databases. Finally,
the databases contain two machine performance mea-
surements from each of the three automated placer
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machines.* Each measurement in the databases is
associated with a serial number that uniquely identi-
fies the circuit board to which it applies.

From the above databases, we construct a single
data set that consists of the measurements from Board
Inspection, Module Inspection, and the three auto-
mated placer machines for a two-week period. In
the first step of the data cleaning, we eliminate the
records corresponding to circuit boards for which
we do not have measurements from all stations; this
leaves 115 records. We next clean the data by delet-
ing records that contain missing values. The remain-
ing N = 89 records comprise the sample from which
we estimate the parameters of the simultaneous-
equations model (3). Each record corresponds to
an individual circuit board and contains measure-
ments on the 11 product quality variables observed at
Board Inspection and the 30 product quality variables
observed at Module Inspection. Also accompanying
each record are measurements on the two-machine
performance (i.e., process) variables from each of the
three automated placer machines. All variables are
scaled to zero mean and unit variance in order to pre-
serve the confidentiality of the data.

4.3. Data Reduction

The six process variables from the automated placer
machines are highly intercorrelated. Therefore, prior
to applying the procedure in §3, we factor analyze
the correlation matrix of these six variables, using the
principal factor method. Table 1 presents the results
for a two-factor solution. Examining the loadings in
Table 1, we conclude that Factor 1 represents the per-
formance of Automated Placers 1 and 2; Factor 2
represents the performance of Automated Placer 3.
We also see from Table 1 that the two factors col-
lectively account for 100% of the variation in the six
observed process variables. Finally, we note from the
loadings in the table that each of the six process vari-
ables is highly correlated with one of the two fac-
tors, implying that the two factors are good proxies
for the original variables. We therefore reduce the six
process variables to two factors. The observations on
the two factors are computed using the regression

*No process variables are observed at the Module Assembly stage.

MANAGEMENT ScIENCE/ Vol. 48, No. 5, May 2002

Table 1 Results from the Factor Analysis of the Six Automated Placer
Variables
Loadings*

Observed Process Variable Factor 1 Factor 2
Automated Placer 1 Variable 1 0.99 0.05
Automated Placer 1 Variable 2 0.99 0.03
Automated Placer 2 Variable 1 0.97 0.26
Automated Placer 2 Variable 2 0.89 —0.46
Automated Placer 3 Variable 1 0.03 0.99
Automated Placer 3 Variable 2 0.03 0.99

Factor 1 Factor 2
Variance Explained® 3.72 2.28
% of Variance Explained 62.06 37.94
Cumulative % of Variance Explained 62.06 100.00

*The loadings obtained by the principal factor method are transformed by a
varimax rotation.

fTotal variance of the six process variabies accounted for by the factor. The
total variance of the six process variables equals 6 since the variables are
standardized.

approach (see Anderson 1984, pp. 575-576, or John-
son and Wichern 1998, p. 553). In the following we
use the two factors as the process variables x; ; and
x; , of the simultaneous-equations model (3).

4.4. Estimation Results

The simultaneous-equations model for the circuit
board assembly system is set out in Figure 4. Table 2
presents the estimation results for selected model
equations. The estimate of the y, , equation, for exam-
ple, is

yllz=O.31x1’1+0.19x1,2+é1,2. (19)

For each model coefficient, we apply a two-sided ¢-
test to check if the coefficient is statistically different
from zero; the asterisks in Table 2 indicate those coef-
ficients determined to be statistically different from
zero (i.e., statistically significant) at the 1% level of
significance (two asterisks) and the 5% level of sig-
nificance (one asterisk). From Table 2, we see the
process variables x; ; and x; , have strong and sta-
tistically significant effects on y, , and y, , and y, 4
respectively. For example, the effect of x; ; on y, , is
0.31, which is statistically significant at the 1% level.
Since the coefficients are standardized, this indicates
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Table 2 Selected Estimation Results

Predicator Equation

Variable Yia N2 Y14 Yin Va1 Y22 Yo7 Ya13 Yo, 28 Ya,29
X149 0.12 0.31* 0.54* —-0.02 — — — — —_ =
X1 -0.10 0.19 0.31 —-0.08 — — —_ == L L'
Vi = = = s —0.05 0.05 0.08* —0.05 —0.09 0.01
Y12 i = — o —0.05 —0.08 —0.08* -0.01 —0.05 —0.00
Yis — S5 == — -0.18 0.04 0.06 0.23 —0.16 0.04
Y14 — = — — 0.19 -0.07 —0.05 —0.06 —0.02 —-0.05
Yis = = — —_ -0.18 0.08 0.04 0.08 -0.13 0.01
Y16 TR T T i -0.07 0.05 —0.04 —-0.02 0.05 0.04
Vi 0 = o — 0.78* 0.46** —0.93* -0.12 0.08 0.1
Y18 =5 i = = —0.06 0.09 0.13* 0.10 -0.11 —0.15
Yie = — — — 0.03 0.04 —-0.03 0.03 —0.01 0.60**
Yi10 — = — — 0.05 —0.01 0.01 —0.04 0.65* 0.12
Yin — —= — —_ 0.03 0.01 —0.03 0.05 —-0.01 —0.05
R-Square 0.02 0.3 0.39r* 0.01 0.70 0:27*% 0.81* 0.05 0.41= 0.47

*Statistically significant at the 5% level.
*+Statistically significant at the 1% level.

that a one standard deviation increase in x,; ; leads
to a 0.31 standard deviation increase in y, ,. Another
notable finding in Table 2 is the significant correlation
between the output quality of the Board Assembly
and Module Assembly stages. The R-squared statis-
tics and coefficient estimates in Table 2 provide evi-
dence that the Board Assembly stage substantially
affects the output quality of the Module Assembly
stage. We also note from the R-squared statistics in
Table 2 that the Board Inspection variables account for
most of the variation in the Module Inspection vari-
ables y, ; and y, ;; this implies that a majority of the
variation in y, ; and y, ; is due to the Board Assembly
stage.

Overall, the estimation results support our model
specification. First, as discussed previously, the results
in Table 2 strongly suggest that the Board Assem-
bly stage affects the output quality of the Module
Assembly stage. Second, with only a few exceptions,
examination of the residuals of each model equation
does not suggest heteroscedasticity, model specifica-
tion errors, or any significant outliers in the data.

Having established that our model provides a good
fit to the data, we use the procedure outlined in
§3.2 to decompose the variance of each product qual-
ity variable into components. The estimated vari-
ance components of selected product quality variables
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are reported in Table 3. The variance components in
Table 3 suggest that the process variable x,; ;, which
measures the performance of Automated Placers 1
and 2, is a major source of variation in the Board
Inspection variable y, ,. Table 3 also provides evi-
dence that variation in board quality is transmitted to
variation in module quality; for example, notice that
a majority of the variation in the Module Inspection
variables y, ; and y, ; is due to the Board Assembly
stage. Finally, we conclude from Table 3 that most of
the variation in the Module Inspection variables y, ,
and y, 5 is due to the Module Assembly stage.

4.5. Managerial Implications

The variance components in Table 3 provide guidance
for allocating process quality improvement resources.
For example, if management wishes to reduce vari-
ation in Board Inspection variable y, ,, they should
allocate process improvement resources to Automated
Placer 1. To reduce variation in Module Inspection
variables y, , and y, 13, on the other hand, manage-
ment should allocate process improvement resources
to Module Assembly. Section 5 of the paper deals with
the allocation of process improvement resources in a
more systematic fashion through the development of
an economic model.
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Table 3

Estimated Variance Components of Selected Product Quality Variables*

Product Quality Variable

Source of Variation

Vi V2 Y14 Yin Va1 Va2 Va7 Y213 V2,28 V2,29
BA*: Auto. Placer 1 and 2 (x ,) 0.01 0.09 0.30 0.00 0.03 0.01 0.02 0.00 0.21 0.19
BA: Auto. Placer 3 (x, ,) 0.01 0.03 0.09 0.01 0.00 0.00 0.00 0.00 0.01 0.03
BA: Unobserved Vars. (g;;'s) 0.98 0.87 0.61 0.99 0.67 0.26 0.79 0.05 0.19 0.25
Module Assembly (e,;) — —_ — = 0.30 073 0.19 0.95 0.59 0.53

Notes.
standardized.

tAuthors’ calculations. Column sums may not equal 1 due to rounding.
*BA = Board Assembly.

The variance components in Table 3 provide an
upper bound on the amount by which variation
reduction at a given stage can improve final prod-
uct quality. For example, we see from Table 3 that
improvements to the Module Assembly stage can pro-
vide at most a 30% reduction of variation in Module
Inspection variable y, ;. (The remaining 70% of the
variation in y, ; is due to the Board Assembly stage.)
Thus, eliminating variation in the Module Inspection
(final product), variables will require improvements
to both the Board Assembly and Module Assembly
stages. We emphasize that the importance of mak-
ing improvements to the Board Assembly stage is not
evident if the correlation between stages is ignored;
this illustrates the need to account for quality linkages
across stages in identifying (a) the sources of variation
in product quality and (b) opportunities for process
and product improvement.

4.6. Implications for Process Monitoring

and Control

Our results also have implications for interpreting
statistical process-control charts and for identifying
stages that are out of control. As noted previously,
the results in Table 2 provide evidence that the Board
Assembly stage has a substantial effect on the output
quality of the Module Assembly stage. This suggests
that if the Board Assembly stage goes out of control,
the output quality of the Module Assembly stage may
be adversely affected, causing conventional process-
control charts applied to the Module Inspection mea-
surements to signal that the system is out of con-
trol. This implies that conventional control charts

MANAGEMENT SCIENCE/Vol. 48, No. 5, May 2002

*Computed using the estimated parameters and Equation (11). The variance of each product quality variable is equal to 1 since the variables are

applied to the Module Inspection measurements can-
not distinguish out-of-control conditions in the Mod-
ule Assembly stage from out-of-control conditions in
the Board Assembly stage. To the extent that knowl-
edge of the out-of-control stages enables the manu-
facturer to take corrective action more quickly, this
underscores the need for process-monitoring proce-
dures that identify the stage (or stages) in the system
that have departed from control.

4.7. Accounting for Rework
For the present application, the procedure in §3 esti-
mates the g x g (9 =41) coefficient matrix B by

AL
ki 12 , (20)
04: 50
where the 0s are matrices of zeros and
B, = (YY) 'Y, (21)

is the estimator of the g, x g, (g, =11, g, = 30) coef-
ficient matrix B;,. A problem with the estimator in
(21) is that boards whose quality measurements fall
outside specifications are reworked. For each board
that undergoes rework following Board Inspection,
the quality measurements gathered at Board Inspec-
tion do not correspond to the quality of the board
when it enters the Module Assembly stage. Hence,
use of (21) will yield a biased and inconsistent esti-
mate of the coefficient matrix B,,, since (21) does not
account for rework. To account for rework, modify the
procedure in §3 as follows: For each reworked board,
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replace the observations in Y; in (21) by the cor-
responding observations observed following rework.
Next, let

E,=Y,-Y;By, (22)

where B, is given by (21), and again, for
each reworked board, the observations in Y, are
replaced by the corresponding observations observed
following rework. Finally, estimate 2 by (15) and (16)
with E, given by (22).

5. Investments in Process

Quality Improvement

Sections 2 and 3 discuss the measurement of each
stage’s contribution to variation in the product qual-
ity variables. We now propose an economic approach
that uses this knowledge in conjunction with eco-
nomic criteria to facilitate informed decision mak-
ing about investments in process quality improve-
ment. Building on the simultaneous-equations model
developed in §2 and research on continuous quality
improvement and learning, we develop an economic
model that links investments in quality improvement
to reduced variation in product quality and, in turn,
reduced quality costs. The economic model captures
the trade-off between investments in quality improve-
ment and quality costs, wherein reductions in quality
costs occur at the expense of additional quality-
improvement investments (and, vice versa, reduc-
tions in quality-improvement investments occur at the
expense of additional quality costs). With a view to
helping management allocate resources efficiently, we
use the model to derive the optimal amount of invest-
ment in quality improvement for each stage of the
manufacturing system.

The cost of quality is the sum of all expenditures
associated with (a) ensuring that manufactured units
conform to specifications or (b) producing units that
do not conform. Specifically, the cost of quality is sum
of prevention costs (investments in preventing non-
conforming units from being produced), the costs of
inspecting units to determine if they meet specifi-
cations, and the costs of producing nonconforming
units. Research and experience shows that the cost
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of quality is directly related to variation in product
quality (Taguchi 1986). Hence, a key focus of quality-
improvement programs is reducing variation in prod-
uct quality.

Realizing reductions in variation requires knowl-
edge of what influences variation as well as appropri-
ate allocation of resources to support variance reduc-
tion initiatives. With this in mind, we augment the
simultaneous-equations model developed in §2 with
research by Moskowitz et al. (2001) and Plante (2000)
on allocating resources to support quality improve-
ment. Moskowitz et al. develop a dynamic model
for resource allocation decisions that integrates learn-
ing, variation, and the cost of quality. The fundamen-
tal premise of their model is that reducing variation
occurs via learning, and investment (resource alloca-
tion) decisions are guided by the trade-off between
investments in learning and the cost of quality. The
models of Moskowitz et al. (2001) and Plante (2000)
are designed to guide decision making about quality-
improvement targets for suppliers. By viewing each
stage of the manufacturing system as an internal sup-
plier, we adapt their models to our multistage setting.
In the remainder of this section, we (1) model the
cost of quality as a function of variation, (2) present
a model of the relationship between variation and
learning, (3) combine these models into a cost model
that describes the trade off between investments in
learning and the cost of quality, and (4) use this cost
model to derive the optimal investment in learning
for each stage of the manufacturing system.

5.1. Impact of Variation on the Cost of Quality

Here we model the cost of quality as a function of
variation in the product quality variables. The cost
models proposed by Taguchi (1986) are widely used
for this purpose in both research and practice. Follow-
ing Taguchi (1986), we model the per unit cost of qual-
ity associated with each product quality variable by a
quadratic loss function (see Sullivan 1984), which is a
function of the squared deviation of the product qual-
ity variable from the nominal performance or target
value. We assume that each product quality variable
is centered in the sense that its mean is equal to the tar-
get value. (If the product quality variable is not cen-
tered, centering can be achieved by using methodolo-
gies such as those proposed by Derringer and Suich
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1980, Barton and Tsui 1991, and Plante 1999, 2001.)
The Taguchi loss for the jth product quality variable
observed at the inspection following stage i can be
written as c;y; j» where ¢;; is a cost coefficient that can
be estimated as described by Sullivan (1984). Taking
the expectation of the Taguchi loss and using the fact
that y; ; has zero mean, we obtain the expected per unit
cost of quality:

c;; Var(y; ;). (23)

The total expected per unit cost of quality for all product
quality variables combined is then

M g

E(TC)=)_> c;Var(y, ). (24)

i=1 j=1

5.2. Impact of Learning on Variation

Equation (24) describes the effect of variation on the
total expected cost of quality. We now consider how
the manufacturer can reduce the total expected cost
of quality by affecting variation. Section 2 of this
paper quantifies variation and identifies its sources.
What remains is a model for assessing the impact of
investments in learning on variation. To this end, we
now consider the learning model of Moskowitz et al.
(2001).

The operations management literature suggests that
quality improvement is achieved via learning. Learn-
ing consists of both autonomous learning (learning-
by-doing) and induced learning (Dutton and Thomas
1984, Lapré et al. 2000, Ittner et al. 2001). Induced
learning—learning that occurs as a result of proac-
tive investment in quality improvement—results from
a deliberate effort to improve process quality via
enhancements in technology, where technology is
broadly defined as an integrated process for cre-
ating and implementing knowledge. Induced learn-
ing can be divided into three parts: (a) engineer-
ing learning resulting in improved designs for parts,
assemblies, and processes, (b) manufacturing learn-
ing resulting in reduced operator errors and ill-
advised process adjustments via improved methods
and training, and (c) management learning resulting
in improvements in organizational structure, better
coordination of engineering, manufacturing and ser-
vice functions, and increased focus on quality and
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reliability (Kneip 1965). We may view induced learn-
ing as a “time machine” in the sense that it accel-
erates quality improvement to a point that would
be achieved, in due time, via autonomous learn-
ing. Indeed, it was observations from several years
of experience working with manufacturing organiza-
tions that led Moskowitz et al. (2001) to consider the
impact of induced learning on quality improvement.
In one instance, a large consumer electronics man-
ufacturer had required nine months from startup to
reach mature product quality. Through investments
in induced learning, this time was reduced to two
weeks.

In modeling the effect of learning on variation
in product quality, Moskowitz et al. (2001) provide
an expression for the variance of product quality
variables as a function of learning. Here we adapt
their approach to our correlated-stage setting. Let
A; (a decision variable) denote the rate of learning
at stage i, and define f; =t;/(t; —1), where t; > 2
represents the amount of experience with stage i
(see Plante 2000). t; could be cumulative produc-
tion output (i.e., the cumulative number of units pro-
duced) or cumulative time. From our specification
that t; > 2, it follows that f; ranges from 2 (virtu-
ally no experience) to 1 (considerable experience). Let
Var, (y; i fl_}‘1 g S f,.’A’ ) denote the variance of y; j as
a function of learning in stages 1 through i. Then,
applying Moskowitz et al. (2001) approach to our
correlated-stage model, we have for the example in
Figure 2B:

Varr(yl, 17 fl_Al) = flwl\1 (a%n Var(x, ;) + 0'121) (25)
Varr(yZ, 1/ ffM ’ 2-/\2)
= fl-/\l (a%uﬁ%m Var(x, ;) +B§1210-121)

+ £ (0 Var(xy, 1) + 02). (26)

Equation (25) specifies that a positive rate of learn-
ing at Stage 1 (A, > 0) leads to reduced variation in
11,1, the product quality variable observed immedi-
ately following Stage 1, except in the extreme case of
considerable experience (t; = o0 and f; =1). From (26),
we also see that a positive learning rate at Stage 1
leads to reduced variation in y, ,, the product qual-
ity variable observed following Stage 2 (provided that
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Bua #0 and f; > 1). Finally, from (26), a positive
learning rate at Stage 2 leads to reduced variation in
Y, 1 (but not y, ;). In general, the reduction in varia-
tion increases as the learning rate A; increases.

5.3. Total Expected Costs

The previous two subsections establish a link between
learning and the total expected cost of quality.
Induced learning leads to reduced variation and in
turn, via (24), a lower total expected cost of quality.
As mentioned previously, induced learning is not free
but rather requires investing in learning. We now dis-
cuss the link between the learning rate A; and invest-
ments in learning. A reasonable assumption is that
investments in learning are directly related to the
learning rate. We model I;, the investment (per unit)
required for stage i to achieve a learning rate of A;, as
a quadratic function of the learning rate:

L=wA? (i=1,2,..., M), @7)

where w, (> 0) is a cost coefficient that can be esti-
mated as described by Moskowitz et al. (2001). This
investment function (27) in combination with the
learning model illustrated in (25) and (26) imply that
investments in learning face diminishing marginal
returns with respect to (a) variation and (b) the total
expected cost of quality (24). Moskowitz et al. (2001)
compare linear, quadratic, and exponential invest-
ment functions, and find that the quadratic invest-
ment function in (27) yields investment allocations
that approximate the common practice of setting qual-
ity improvement goals at a 20% reduction in variation.

Augmenting the total expected per unit cost of
quality (24) with investments in learning (27) and the
reduction in variation resulting from learning, we get

9i

M
E(TC) = z[w,A,? 3 Van,(yi s £ ffA')].
i=1

j=1
(28)

This cost model (28) captures the trade-off between
total expected quality costs and investments in learn-
ing. According to the model, quality-cost reductions
occur at the expense of additional investment in learn-
ing, and vice versa, reductions in learning invest-
ments occur at the expense of increased quality costs.
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5.4. Optimal Investments in Learning
The learning rates A, A,, ..., Ay that minimize total
expected cost (28) are a solution to the first-order
conditions
JE(TC) & i
Tl 2w+ ¢y Var! )(.‘/i,,‘)

i j=1

9k

+ Z Z Cxi Var(ri) )

kell; I=1

=0, i=1,2,..., M, (29)

where U; is the set of stage i’s successors and
Var!(y, ) is the first partial derivative of
Var, (v 15 fl_}“, ,fka") with respect to A;. It can be
shown that the Hessian matrix of (28) is positive defi-
nite; hence, (28) is a convex function of Ay, A, ..., Ay
and there exists a unique solution to the first-order
conditions (29). Although they cannot be found
directly, the values of A, A,, ..., A, that solve (29)
can be found by using the Newton-Raphson method.
Letting A7 denote the optimal learning rate for stage
i, the optimal level of investment for stage i is given
by (27) with A; = A7 (i=1,2,... , M).

Consider for illustration the example in Figure 2B.
The learning rates A; and A, that minimize total
expected cost (28) are the unique solution to the first-
order conditions

%}T) = 2w A — f M In(fy)
x [en1 (03, Var(x; 1)+ 05 )+ (a3, B
x Var(x; 1)+ Bi105)] =0, (30a)
e L5 Mmoo —F, 2InLF,)
o,
x [y (a3, Var(x, ;) +03;) ] =0. (30b)

The solution can be found by using the Newton-
Raphson method.

6. Discussion

This study proposes and validates a procedure for
measuring the impact of each stage’s performance
on the output quality of subsequent stages, includ-
ing the quality of the final product. The procedure

MANAGEMENT SCIENCE/Vol. 48, No. 5, May 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com



ZANTEK, WRIGHT, AND PLANTE
Process and Product Improvement in Manufacturing

builds on the precedence ordering of the stages in
the system and uses the information provided by cor-
relations between the product quality measurements
across stages. The procedure is easy to implement and
is applicable to manufacturing systems that contain
large numbers of stages.’

From a managerial perspective, the procedure is
appealing because it identifies stages where process
improvements have the potential to yield significant
improvements in product quality. Moreover, the vari-
ance components estimated by the procedure can be
monitored over time in order to (a) detect changes
in process quality and (b) track the effectiveness of
quality-improvement (i.e., variation reduction) efforts.
Finally, the network representation of the model is
easy to understand and computer executable.

By quantifying the impact of each stage’s perfor-
mance on variation in product quality, our proce-
dure provides a foundation for evaluating process
quality improvement strategies. Combining knowl-
edge of each stage’s impact on variation in product
quality with research on continuous quality improve-
ment and learning led to the development of our eco-
nomic approach for allocating investments in quality
improvement. Our economic approach finds the opti-
mal amount of investment in quality improvement
for each stage of the manufacturing system, provid-
ing guidance to management on investing in quality
improvement.

The findings from our empirical analysis of the pro-
duction line data carry a number of implications for
the management of quality-improvement activities.
For example, as discussed in §4.5, quality linkages
across stages need to be accounted for in identifying
the sources of variability in product quality. A corol-
lary of this is that manufacturers who ignore quality
linkages may make suboptimal investments in pro-
cess quality improvement. Thus, our results demon-
strate the need for manufacturers to account for qual-
ity linkages in making decisions about investments
in quality improvement. As discussed in §4.6, our
finding of substantial correlations between the prod-
uct quality variables across stages provides empirical

>We have implemented the procedure using the matrix language
SAS/IML (SAS Institute 1990).
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evidence that conventional process-monitoring pro-
cedures are not appropriate for identifying stages
that are out of control. This emphasizes the need for
manufacturers to use monitoring procedures that are
designed for multistage manufacturing systems.

We hope this study facilitates more effective invest-
ments in process quality improvement. We also hope
this work provides a rigorous and coherent frame-
work for future research on quality improvement
in multistage manufacturing systems. An important
avenue for future research is extending our model and
procedure to allow for scrapping of nonconforming
units prior to the final inspection.
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